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A theory of the hydrodynamic structure factor for quasicrystals is developed and exploited. Based on the
hydrodynamic equations for icosahedral quasicrystals we introduce the terms of dynamic correlation and
response. The phononic and phasonic diffuse part of the dynamic structure factor are examined in detail in
frequency and time domain. We present a complete set of solutions for the hydrodynamic equations. Out of the
diffusive modes we separately study the phasonic diffusion, the anisotropy of the phasonic diffusion constants,
and the general solution for phason wall diffusion. All results include phonon-phason coupling.
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I. INTRODUCTION

Quasicrystals are solids with long-range order, but of non-
crystallographic, for example, fivefold or icosahedral sym-
metry. As immediate consequence they must be incommen-
surate. The Fourier transform of their mass density is a series
in which there are more basic harmonics n than dimensions d
of space. As d linear combinations of the phases of the basic
harmonics describe (phononic) translations # in real space,
the remaining n—d combinations give rise to a novel degree
of freedom, denoted “phase” or “phason.”!~* An elegant way
to tackle the phase is to lift the quasicrystalline structure to a
periodic structure in an n-dimensional space R"=E'® k!,
where it corresponds to a translation w in the orthogonal
complement E* of physical space E'. It manifests itself as
structural rearrangements by atomic flips among split posi-
tions. Together with the gradient Vu the gradient of the phase
displacement Vw can be incorporated into a generalized
phonon-phason elasticity theory.*® Time-dependent long-
wavelength excitations are treated with a generalized hydro-
dynamic theory, of which there are several versions. Here we
apply the theory of Lubensky et al.”

Phason modes are involved in many dynamic processes of
quasicrystals, e.g., phase transitions,® diffusion,”!? disloca-
tion motion, and crack propagation.!! Direct observations of
phason oscillations were made by Edagawa et al.'> Phason
fluctuations become most evident in quasielastic neutron-
scattering experiments. They display asymmetric shoulders
of the Bragg peaks that Jari¢ et al.'3 had predicted by per-
forming calculations of the static structure factor, and they
allow to measure absolute values of the phason elastic con-
stants.

Here we will generalize the theory of Jari¢ et al. to deter-
mine the phonon and phason hydrodynamic structure factor.
The phason part has not yet been measured as it is somewhat
distant in frequency from the window accessible by neutrons.
But as more and more quasicrystalline structures outside the
traditional metal class are discovered or synthesized, e.g., in
polymers,'* liquid crystals,'> or colloids,'® experiments on
the phason hydrodynamic structure factor might become fea-
sible in the future. They would give access to hydrodynamic
material constants as viscosities and kinetic coefficients.
Here however, we restrict to metals exclusively. A short ac-
count on some features of the hydrodynamic structure factor,
which we were able to reproduce, was given in by Ishii in
1998.17 We concentrate on single-component icosahedral
quasicrystals.
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Phason diffusion constants were measured in the decay
of phason walls that follow dislocations, and in speckle
patterns.'820 The latter depend directly on the phason modes
in reciprocal-space representation, of which we also will give
a detailed account.

The paper is organized as follows: in Sec. II we will de-
rive the hydrodynamic structure factor from the continuum
representation of a quasicrystal mass density, for which the
dynamic susceptibility is required. This response function is
obtained from the hydrodynamic equations and is evaluated
for icosahedral quasicrystals. The main properties of
phonons and phasons will be detected in the diffuse part of
the dynamic structure factor. In Sec. III the solutions of the
hydrodynamic equations are listed, of which the phasonic
diffusion will be separately studied in Sec. I'V.

II. DYNAMIC STRUCTURE FACTOR
A. Expression for S(k, )
The time-dependent mass density of a distorted quasicrys-

tal is given by

P 1) = 3 peelks o,

&

(2.1)

where y denotes the phonon-phason displacement vector

u(x',r)
v D=ul' newx = """ (2.2)
w(x' 1)
and Kk the vectors of the reciprocal hyperlattice G,
kH
k=k'® k= (ki>' (2.3)

Note, that y depends only on the physical coordinate x'=:x.
The density-density correlation function is defined as
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The thermal average is performed in the canonical ensemble.
The dynamic structure factor is the spatial and temporal Fou-
rier transform of this correlation function,

S(k,w) := f d*x f dt C, (x,1)e*x. (2.5)
In the harmonic case Eq. (2.4) can be expanded,
1
(M) =e2W) =1 4 FIGRRREE (2.6)

and we have to average over the phonon-phason displace-
ments y,(x,t)y5(0,0). The result is given by the generalized
fluctuation-dissipation theorem

' A0 iy, XapXx's @)
<'ya(x,[)'yﬁ(x ,t )):f ;e iw(1—t )ZkBT_%’ (2.7)

see Chaikin and Lubensky.?! X'o,tﬁ denotes the imaginary part
of the dynamic response function x,g(x,x’,®). For the dy-
namic structure factor follows,

S(k,w) — E |PK|2€_2W(K)

KkeG
X {(277)46(k -k o(w) + kBTKIL;k”,w)K} ,
(2.8)

with the Debye-Waller factor,
2W(K) = Ko Volx,0) )’ﬁ(X,O))Kﬁ = Kaf (ZCPTq)ngTXa,B(‘I)Kﬁ,
(2.9)

where we use the Einstein summation convention. The last
equality follows directly from Eq. (2.7) and the thermody-
namic sum rule,2'%2

do X! 4x,x", )
Xa,g(x,x')= lim Xag(x,x’,w)=f _&.B—’
w—0 T )

(2.10)

where x,(x,x’) is the static susceptibility. Hence the static
structure factor S(k) results as an integral over Eq. (2.8),

d
S(k) = J ZC:S(k,w)
= 2 |p?e 2V (2m)3 Sk — k") + kpTre'x(k - k') i}
xed

(2.11)
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B. Dynamic response function

The main quantity in the expression of the dynamic struc-
ture factor in Eq. (2.8) is the dynamic response function
x(x,x",w), which depends only on the difference x—x’
due to translational invariance. Its Fourier transform
X@x—=x',t=1t") describes how the displacements (x,?)
=(u,w)" vary in the presence of external volume forces
b’ .1)=(bb"),

'y(x,t)=Jdt'fd3x’X(x—x’,t—t')b(x’,t'), (2.12)

or after spatial and temporal Fourier transformation,

(g, 0) = x(q,0)b(q,w). (2.13)

It therefore serves as Green’s function. Such a linear relation
between forces and displacements can be obtained via the
linearized hydrodynamic equations of the icosahedral
quasicrystal,’

—iwdplq,w)=—iq-g, (2.14a)

- iwg(g.0) =— n(q)g —i(A - B)plép - N(g)u - C(q)w
0

+b(q,w), (2.14b)

—iou(g.0) =5 -T,| - iBL 6p+ Ngu + Clq)w
Po Po

+Tb'(q,w), (2.14¢)

- lww(qsw) == Fw[M(Q)W + gt(q)u] + wal(q’ w) .
(2.14d)

In addition to the phonon and phason displacements u(g, ®)
and w(q,w), the hydrodynamic variables of this system of
equations are the momentum density g(¢g, ) and the change
in mass density, given by dp(q, ) with the quiescent density
po- For icosahedral symmetry we obtain five elastic con-
stants. The phononic block N(g) depends on the two Lamé
constants A and w. The matrix C(q) describes the coupling
between phonons and phasons with the corresponding cou-
pling constant K3 while K, K, are two pure phasonic elastic
constants of the phasonic matrix M(q). A~! is the compress-
ibility while B couples the density to quasilattice dilations.
7(q) indicates the tensor of viscosity. The two kinetic coef-
ficients I', and T',, are the diffusion mobilities for vacancies
and phasons. For the definition of these matrices and the
elastic constants see Appendix A. We arrive at Eq. (2.13) by
eliminating the momentum density g(q,w) in Eq. (2.14c).
The reduced system takes the form

¥(q,0) =[io’A - 0’B(q) - il (q) - A(@)]"'[- 0T A - iwE(q) - Z(q)]1b(q, ),
L D

'
=x(q,0)

(2.15)
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with the 6 X 6 matrices A, B(g), I'(g), A(q), E(g), and Z(q)
which are listed in Appendix B.

C. Phononic diffuse part

The first term of the dynamic structure factor in Eq. (2.8)
corresponds to the usual Bragg reflections, while the second
one describes the diffuse broadening, resulting from the
phonon-phason fluctuations. We want to study the shape of
these diffuse shoulders and their dependence on the great
number of parameters separately for phonons and phasons
before we change from frequency to time domain.

Around the Bragg peak k' the phononic diffuse part is
proportional to

Dpho(q7kuvw) = k”t (216)

o)
with g:=k—k' and the phononic block of the dynamic re-
sponse function x,,(q,®) given by Eq. (B7a). In a first step
we examine the decoupled case. For K;=0 Eq. (2.16) re-
duces to

0"

2X0q, @)
pho(q K w): :kuzT Al
2 (g.0) _ 27 (g.0) | k")’
w w q2
2 OH i
L2 @), (2.17)
w

where we have used the response function without coupling
qu(q a)) from Eq. (BS). x; 1s the longitudinal part of the
tensor XW with respect to ¢, XT the transversal. Both quanti-
ties are defined in Appendix B and depend only on g=|gq|. We
intend to plot Eq. (2.17) as function of ¢ centered around k'.
The two terms describe a superposition of a dipolelike shape
and a sphere. This sum depends on the nine parameters p, u,
A=2p+\, 0, 'y, 71, 71, A, and B of the prefactors. For
icosahedral AIPdMn we take for these constants the follow-
ing values,

kg

po=5080—35. A=85 GPa. =65 GPa.

3 2

_,sm”s cm
r,=r,=1x10 E n=nr=1—and
g S

A=B=1 GPa. (2.18)

The mass density p, of AIPdMn is known.?* The Lamé con-
stants N and u have been determined by Amazit et al.>} via
sound velocity measurements. From the phasonic diffusion
constant, measured by Francoual et al.,® follows the value of
the kinetic coefficient I',,. Their relation will be come evident
in the next section. Since the two diffusion mobilities de-
scribe the same hopping mechanism for vacancies and pha-
sons, we assume I', to be of the same order as I',,. For the
kinetic viscosities #; and 7; we use the value given by
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FIG. 1. (Color online) The intensity distribution of the phononic
diffuse part for the 20/32(x) reflection along the twofold direction
for three different frequencies. The minima are located at ¢,=0
while the maxima lie on the curve given by Eq. (2.20). For smaller
values of the kinetic viscosity, such as 7,=0.25 cm?/s, Gx.max ap-
proaches the linear-dispersion relation ¢;q,.

Lubensky et al.” while for the yet undetermined constants A
and B we make the above assumption. Inserting these values
in Eq. (2.17), the phononic isointensity contours in the g,q,
plane result in concentric circles with the center at k', as the
second term in Eq. (2.17) dominates, being two orders larger
than the first one. This is illustrated on the right side of Fig.
1 for the 20/32(x) reflection, labeled by its N/M indices,**
and for three different frequencies w. If we consider the in-
tensity distribution along this twofold direction, setting g,
=0, Eq. (2.17) leads to the wavy curves in Fig. 1, which
show a local minimum at g,=0 of value

2r
Dipo(0.K, ;‘k',‘f. (2.19)
Also two global maxima exist at the positions
- = (2.20)

S
+ > )
(w2d2 + 02)1/4

This expression is a generalized dispersion relation contain-
ing the damping constant

L,
d) = + —5(A-B)?
PocL

(2.21)

with poci=A+A—2B. ¢y, denotes the longitudinal sound ve-
locity. Note that Eq. (2.20) is an approximative solution since
we omitted higher-order terms of I', in Eq. (B8). For d?=0
Eq. (2.20) is equal to the well-known linear-dispersion rela-
tion g, n.x=* w/c;. In the overdamped case and for high
frequencies g, n,x simplifies to g, = F Yo/ dg. The fre-
quency dependence of g, ., and the resulting intensities for
different frequencies are also shown in Fig. 1. This behavior
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of the phononic diffuse part is valid for all values of w, I',,
7, I A, and B (the rest ones we took as fixed) and for all
other reflections. Whether maxima and minima can be re-
solved separately from each other depends on the damping
parameters and  primarily on I',. For T ,>1
X 1071 m? s/kg the fine structure is lost and maxima and
minimum merge to one big maximum. The shape of the
isointensity contours also changes and looks like the one of
the static structure factor.”®> Therefore making I, larger
causes a zooming out.

We now switch on K3 and at the same time simplify the
expression of x,,(q,w) in Eq. (2.16). As already mentioned
in Sec. I the displayed isointensity contours are out of the
measurable frequency window for neutron scattering. Hence
we consider the time-dependent structure factor S(k,z). Ne-
glecting diffusive and higher-order terms of ¢, Eq. (B7a)
splits into a transverse and longitudinal part

X, 0) = X1,(q.0) + X5 (g, ), (2.22)

similar to the case of zero coupling. The transverse response
function takes the form

Xb(q.0) = x1,(q. )P
_L - -iw r &P e
= nr+ L+ —PCC g
Po Mq
-1
+c§q2} P, (2.23)

or written in spectral representation:

1/py

, W 0,®0,)P,
XW(q )= ,;1 -’ - iwdy, g+ c%qz( )
(2.24)
where we define
r,A
dT,a = 7]T+qu“+_w_aa a=1,2,3, (225)
Mmoq

with eigenvalues A\ ,(g) (two nonzero ones) and eigenvectors
0,(q) of the matrix P C C'. The matrix P:=1-§ ® § projects
a vector transverse to the direction of §. dr, describes a
constant damping for the transverse modes while cy
=\ u/py denotes the transverse velocity of sound. For the
longitudinal response function we obtain

1/
)_(Z,(q,w) = Xﬁu(q’ ®)Q="3 - 2 28

-’ —iwdg* + ciq

(2.26)
with the damping constant
T, Tr{QCC']
dp=m+—5(A-B*+—5———. (2.27)
Pocr PocL q

This is the full version of Eq. (2.21) containing now an ad-
ditional coupling term, which is about four orders smaller
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than the second one. Q:=§ ®{ is the longitudinal projection
operator. The dynamic diffuse part for phonons results as

T/
2 Llu( ’ uu( 2
o R e, (A P . 1 L 2Xul9>©
w
3
dr.4q"1Po
= & kHI(v"a ® ﬁa)Pk”
i (c7q° = ) + 0’d} 4" =
quz/Po
K. g2 (228
" (3 —w2)2+w2d§q4( 9. (228

Since the zeros of the denominators of )(g:/ w and Xﬁ;/ w are
the propagative dispersion relations, computed first by
Lubensky et al.,’ the inverse temporal Fourier transformation
can be performed via residue theorem

3 o~ (12)dp ol

pho(q k‘ t) 2

{er cos(crqlt))
a=1 P()

1
+drad’ sin(c7q|r|>] (k" 6,)[(@,- K
- (0, - §)(g" - k)]

e—(l/z)quzM

+ —3 3 [CLCI cos(cqlt])
Pocrq

+ Equ2 sin(ch|t|)] k" ). (2.29)

According to the thermodynamic sum rule, Eq. (2.10), for
t=0 we obtain the static diffuse part Dpp,(q, k”) with
the two static susceptlbllltles XW(q w=0)=1/pyciq* and
X (g, 0=0)=1/pyciq’>. The time dependence of

Dono(q .k, 1) takes the form of a damped oscillation. As we
can see by the expressions for dr, and d; the phason cou-
pling only causes a decay of the propagative phonons in
addition to the kinetic viscosities and the kinetic coefficients.

D. Phasonic diffuse part

The dynamic phasonic diffuse part for a single reciprocal-
lattice vector k* follows without Debye-Waller factor as

)
2X0(8:2), (2.30)
®

Dopalq. k", ) == k'

The dynamic response function y,,,.(q,) from Eq. (B7c) is
equal to x,,,(¢,®)=T,8" with the stiffness matrix S(q,®),

S(g.®) =[- iwl + T, (M - x{C'QC - 7C'PO)].

(2.31)
As in the previous section Xg and X(% are the longitudinal and

transverse part of the tensor lgu with respect to ¢, see Eq.
(B9). For zero coupling Eq. (2.31) reduces to
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20/32(x)

FIG. 2. The zooming effect of the frequency w illustrated on the
phasonic isointensity contours of the 20/32(x) twofold reflection.
Since the form of the contours for small values is the same aniso-
tropic as in the static case, for higher ones they take an almost
circular shape.

S%g,0) =-iwl +I',M(q), (2.32)
and we obtain for Dgha(q,kL ,w),
2T
ki klt w
phd(q (1)) + FZM(q)z
= kt-é)%. 2.33
2 +F2M2 Lkt 6)%. (2.33)

i=1

M (@, ¥)q* are the eigenvalues and é,(¢, ) the eigenvectors
of M(g). The product I', M(K;,K,) =: D! gives us, as we will
see in the next section, the phasonic diffusion coefficients,
which depend on the phasonic elastic constants K, K, and
on the direction of g=¢§(¢,9). From this relation and by
measurements of DY we can get the values of the kinetic
coefficients I',, and I', of Eq. (2.18). The shape of the pha-
sonic isointensity contours is governed by the four param-
eters w, I',,, K;, and K,. The two phasonic elastic constants
K, and K,, whose ratios are actually responsible for the
form,'®2® have been determined by measurements of the
static structure factor. For our computations we take the
values specified by Létoublon et al.:*’ K,=16.2 MPa and
K2=—8 4 MPa for room temperature. Computing

pha(q k*,w) for these values we obtain one maximum at
q=0 for all frequencies @ and kinetic coefficients I',,. The
form of the phasonic isointensity contours also stays the
same. Rising w merely causes a zooming into the unaltered
shape (see Fig. 2) while increasing I',, shows exactly the
opposite behavior. To quantify this broadening we consider
the maximum value at g=0,

2T,
1Dha(o ko) = ?k”, (2.34)

which is also valid with coupling, and the contour at half
maximum
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| @ )
Q((P) = F_F((P7K1’K29kl)a q= \”q)2c+q§ (235)

We obtained this result due to the simple frequency depen-
dence of Dgha in Eq. (2.33). F(¢,K,,K,,k*) is a function of
the M. For the maximum positions of the phononic diffuse
part in the overdamped case we also obtain the root ratio of
frequency and damping constant. In Eq. (2.35) this damping
parameter is the kinetic coefficient I',,. Egs. (2.19) and (2.34)
are formally the same.

For K;#0 we now neglect in the inverse Fourier trans-
form the propagative terms of the expressions for X(% and Xg,
see Eq. (B9). The stiffness matrix S(¢g,w) from Eq. (2.31)

simplifies to

S(g.0) =—iwl +I',M(q), (2.36)
where we have defined
. cQC cPC
M(q) := M(q) - —22 S5 %q . (237)
PoC 4~  Pocrq

In analogy to Eq. (2.33) the phasonic diffuse part around k'
takes the form

2r
Dpha(q7kl’w) =kL[—MLkL
o+ FZM(q)2
=> —(kL é)%. (2.38)
il 0>+ T2 M2 "

M (¢, 9)q? are now the eigenvalues and é,(¢, 9) the eigen-

vectors of M(q). The product I',,M,=:D, is the correspond-
ing phasonic diffusion coefficient with coupling. Looking at
Eq. (2.38), Dy, shows the same frequency dependence as
without coupling. The prefactor in Eq. (2.35) is therefore still
valid for K3# 0. For the inverse Fourier transformation of
the Lorentz curve in Eq. (2.38) we obtain an exponential
decay in time

Dinalg: k1) = k- V() e T M@l
3

=2 =

-, A
e—FwMiq M(kl . ei)Z.
i=1l M,q*

(2.39)

The matrix M(q) is positive definite.

Using this result for Dpha(q,kL ,1), we can establish a con-
nection with the speckle patterns, measured by coherent
x-ray spectroscopy.?>?® The intensity-intensity correlation
function I(q,1) is

I(g.1) =1+ Bg(q.1), (2.40)

where g(q,t) characterizes the time dependence of the fluc-
tuations. B is the degree of coherence of the beam. For pha-
son fluctuations the function g(q,7) is proportional to the
squared ratio of the dynamic and static phasonic diffuse part
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- R
e_FwMiq M(kJ- . el.)z

Donalg.k 1) ]2 | = Mg

g(q9t) o l ,Dpha(q’kL)

(kl N éj)z

Jj=1 qu
(2.41)

III. SOLVING THE SYSTEM OF HYDRODYNAMIC
EQUATIONS

The hydrodynamic mode structure of the linearized equa-
tions of motion has been studied up to now only for the
propagating modes.” After a brief recapitulation we present
solutions also for the diffusive modes.

A. Solution for the propagating modes

Equations (2.14a), (2.14b), and (2.14c¢) split into a trans-
verse and longitudinal part of ¢, denoted by the subscripts 7'
and L. Considering propagating phonons with wxgq, diffu-
sive terms, which are of the next order of wave number, can
be neglected. Equation (2.14d) becomes in the propagating
regime without forces
r.c

—u(q,0).
[10]

w(g,w) = (3.1)

With this expression and after some manipulations we get
decoupled equations for u; and u;=u;q§. For the transverse
mode we obtain

r
{— w? - iw[ nr+ T+ M—;“PCCZ] 7+ C%qz}uT= b!/P0~
(3.2)

This equation describes a damped oscillation. The homoge-
neous solution (b)=0) is
3
ui(q.1) =22 b, cos(crgne D,

a=1

(3.3)

where ¢, is a constant depending on initial conditions. As
already seen in the section before, the oscillation is given by
the transverse velocity of sound c7, the damping by dr,. In
the presence of external forces Eq. (3.2) can be written with
the transverse response function (2.24),

uT(q’w) =X£u(q’w)bl;(q’w) (34)

The particular solution follows as the inverse temporal Fou-
rier transformation of this product,

3 t . ’
,sinfepq(t—1')]

a=1J —» Pocrq

X e 12drad’ =05 pl(q. 1) ,.  (3.5)

The longitudinal mode, too, is given by a damped oscillation
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I
[- 0’ —iwdg*+ Ciqz]“L = p_L
0

(3.6)

with the damping constant d; and the longitudinal sound
velocity c¢;. The homogeneous solution follows as:
U (g.) = eV ey cos(ergr) + s sin(ergn)],

(3.7)

where the constants ¢; and ¢, are determined by initial con-
ditions. For bQ#O, Eq. (3.6), is equal to

uL(q’ (,L)) = Xf;u(cﬁ w)b[(qs (1)) s

with the longitudinal response function x% (q,w) from Eq.
(2.26). As we have seen before the particular solution in time
space takes the form of a convolution

3 t : ’
sinfc r—t
(g0 = 2 f g Snlegt = 1]
a=1J —» PoCLg

(3.8)

X e 120Dl (g 41 (3.9)

The corresponding phason field w(g, ) for the homogeneous
solution of u=u+u; is obtained by inverse Fourier transfor-
mation of Eq. (3.1),

Jd
a—‘:(q,z) —_T,Clu(g.r). (3.10)

B. Solution for the diffusive modes

When solving the system of hydrodynamic equations for
the remaining four diffusive modes one has to neglect all
propagative and inertial terms. We obtain an expression ana-
log to Eq. (3.1), which now relates u# with w in the diffusive

regime
Q P \C
u(q,t)=—<;2+—2)—2w(q,t). (3.11)
PocL  Pocr/ 4
Inserting this equation in Eq. (2.14d) we obtain
[-iwl+D,M(@)w(g.0)=Tb"(q.0)  (3.12)

with the phasonic matrix M(q) from Eq. (2.37). As we will
discuss in detail in the next section, Eq. (3.12) describes an
anisotropic diffusion equation for phasons. Considering the
case b1 =0, we get

3
Wwiom(g. 1) = > e T8l w(g,00]6, >0,
i=1

(3.13)

where the diffusion coefficients result as I‘WM ;=:D; and the
initial condition is given by w(g,0). Expressing Eq. (3.12)
with the phasonic dynamic response function

w(g,®) = Xu(g. 0)b" (g, w), (3.14)

the particular solution follows as convolution
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3 ~
whi(q.) = | di' e MG b (g, )16 (3.15)

i=1 J —

One diffusive mode still remains, namely, the one for the
vacancy diffusion. Eliminating g; in Eq. (2.14a) we obtain a
diffusion equation of the form

[~ iw+Dsq*10p(q.0) =0, (3.16)
with the diffusion constant D S5po
AA - B?
Ds =, —— (3.17)
PTiuAN_B
and the solution
3p(g.1) = ¢ P 6p(q.0), 1> 0. (3.18)

IV. PHASON DIFFUSION

In this section we present a special solution of the pha-
sonic diffusion equation. Before we go into detail, we first

have to compute the eigenvalues M .q* of the phasonic matrix
@(q). A first investigation was already given by Ishii.>”

A. Directionality of the diffusion coefficients

As already mentioned in the previous section the diffusion

coefficients D,(¢,9):=T",M,(¢,9) depend on the direction
q=q4(¢,0). In order to simplify matters we study their di-
rectionality on the g,q,-twofold plane and determine the ei-

genvalues of M(q) for ¢,=0& 9=m/2. The result is shown
in Fig. 3. For K;=0 the diffusion constants D? take maxi-
mum and minimum values along the threefold, fivefold, and
twofold axes. Two of them become degenerate along the
threefold and fivefold axis. The corresponding eigenvectors
along these directions span a plane, in which the anisotropy
is lost. Only for the twofold direction we get three different
diffusion coefficients: DY # DS # Dj. Switching on the cou-
pling, the values D? diminish and additional intersections
and extrema occur for higher K;. An exceptional position
takes the fivefold axis. Along this direction two diffusion
constants never change their value and decouple from Kj.
For our computations we use the values of K; and K, given
in Sec. I D. From these and the stability criteria,3*3! the
maximum value of the coupling constant follows as K3 .,
=0.77 GPa. At this value two modes become soft.

Along the twofold axis g,=¢,€, the diffusion coefficients
D; and the eigenvectors é; take the form

1 K3 X ,
D1=FW K1+ 7'—5 KZ_M_Tz s el=(070’1)’

K, K
D2=FW|:K1—_2—_32:|, é2=(0,1,0)t,

3 pocr
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a) K;=0

3 ‘AS ‘A5 ‘ A2 ‘ A? A\"S DO*
25) T~ L py
2> < D§—
151 1 Dy
1.0} 1 D2
0.5 ] Ds--

0 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1.0

b) K3 =0.38 GPa

0 Il Il Il Il Il Il Il Il
0 01 02 03 04 05 06 0.7 08 09 1.0

c) K3 =0.74 GPa

?,D; [107"*m?/s]

0
i

0 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1.0

d) K3 =0.77GPa

A3 A5 A2 A5 A3

\\.
7 <
.

01 02 03 04 05 06 07 08 09 1.0

0:
0
@ [n]

FIG. 3. (Color online) The directionality of the diffusion coef-
ficients without and with coupling, D? and D,, as a function of the
polar angle ¢. An increase in K3 lowers the coefficients. There are
systematic degeneracies along the threefold and fivefold axes, the
intersection point of the latter being independent of K. At the maxi-
mum value of K3 a softening occurs.

11 K?
Di=T,| K, -|=+=|K,- 72|, é;=(1,0,0),
T 3 s

(4.1)

with D,-<D?. There are accidental degeneracies for K;
=0.38 GPa and K3=0.74 GPa, see Fig. 3.
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t = 10000 s
2 ~
w-e;p —
15F | w-é —
<Q.3‘ ; | w - e3
=
&8
3

-400-300-200-100 O 100 200 300 400

y [nm]

FIG. 4. (Color online) Broadening of the phason walls.

B. Phason wall diffusion

Diffusion constants can be measured by phason wall dif-
fusion experiments.'® Equation
[~ iwl +T,M(g)Iw(g.©) =0, (4.2)

already specified in Sec. III B describes an anisotropic diffu-
sion equation. In direct space it is for K3=0,

6 3
o) =S S Copro gt

ot i “Pox;ox

a=4,5,6,

(4.3)

with the stiffness tensor C,g; and Cy;5q:9;:=M ,5(q). For

the special initial condition of a phason wall
w(x,t=0)=b {1 - O[A" (x —x,)]}, (4.4)

where b+ denotes the Burgers vector, 7 the plane normal of

the wall, and ® the usual Heaviside step function, we obtain
with Eq. (3.13),

3
1
wix,1) = 52 [é/(¢,9) - b*]
i=1

X (l—erf

where erf is the error function. If the normal vector # points
along the twofold axis A2: i=é, and the Burgers vector is
taken as measured by Feuerbacher et al: bte(1,7,1-17),
then the wall splits into three propagating walls with differ-
ent diffusion coefficients. For the plane in the experiment of
Ref. 18, Ax(7,—1,7+1)", é; and é, are orthogonal to b+,
hence only one wall was visible (see Fig. 4).

For this direction the effect of K3 on the diffusion coeffi-
cients has been discussed in the previous section. For K3
=0 the D, in Eq. (4.1) are linearly dependent on K, and K.
The maximal difference between them occurs for the maxi-
mum value of |K,/K,|. This is given by the stability
criteria:?%3! | Ky / K| nax=3/4.

i’ - (x = xp)

— |60, 9)|,9 >0,
2\”Di(@,ﬂ)1) v |‘P’?

(4.5)
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V. CONCLUSION

In conclusion we have derived the hydrodynamic struc-
ture factor from the time-dependent mass density of a dis-
torted quasicrystal. The main quantity in the expression of
S(k,w) is the imaginary part of the dynamic susceptibility.
For icosahedral quasicrystals we have obtained this dynamic
response function, which relates linearly external volume
forces to displacements, from the corresponding hydrody-
namic equations.

We have investigated the diffuse part of the hydrodynamic
structure factor for a single reciprocal-lattice vector and
without Debye-Waller factor for phonons and phasons. The
essential result for the phononic diffuse part are two maxima
along a dispersion relation modified by damping parameters.
The phonon-phason coupling constant K5 is one of these pa-
rameters in addition to the kinetic viscosities and kinetic co-
efficients. Whether the two maxima can be separately ob-
served primarily depends on I',. The displayed phononic
isointensity contours, which were concentric circles around
the reciprocal-lattice vector in physical space, are out of the
measurable frequency window for neutron scattering. Hence
we considered the time-dependent phononic diffuse part,
which takes the form of a damped oscillation. The diffusive
character of the phasons can be detected in their diffuse part
of the dynamic structure factor. Frequency w and kinetic co-
efficient I',, cause an inverse zooming effect of the phasonic
isointensity contours. For small frequency values they are
anisotropic, becoming almost circular for higher ones. Since
the phasonic diffuse part is a Lorentzian in frequency, we
obtained an exponential decay in time for the inverse Fourier
transformation. We used this result to establish a connection
to the intensity-intensity correlation function I(g,7), mea-
sured by coherent x-ray spectroscopy. I(q,t) depends on the
function g(q,7), which for phason fluctuations is proportional
to the squared ratio of dynamic and static phasonic diffuse
part.

Analyzing the hydrodynamic mode structure of the linear-
ized equations of motion, we have listed all solutions for the
propagating and the diffusive modes. The propagating solu-
tions are damped oscillations depending on the correspond-
ing sound velocity. Coupling to the phasons causes an addi-
tional damping term. On the other hand the phasonic
diffusion constants take reduced values for K53 # 0. The par-
ticular solutions can be expressed with the corresponding
parts of the dynamic response function.

We separately have studied the directionality of the pha-
sonic diffusion coefficients in the g.q,-twofold plane. There
are systematic degeneracies along the threefold and fivefold
axes and accidental ones along the twofold axis for special
values of the coupling constant. The intersection point along
the fivefold axis is independent of K. Solving the phasonic
diffusion equation for the special initial condition of a pha-
son wall in general results in a superposition of three error
functions, for each diffusion constant one. In the experiment
of Ref. 18 only one wall is visible. The selection rule is the
component of the Burgers vector along the eigenvectors of
the phasonic matrix.

APPENDIX A: THE ELASTIC MATRICES

The definition of the elastic constants in this paper is the
same as of Widom ez al.,>® which is also used in several
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experimental papers.?2%?7 For the phononic matrices N(q)
and S(q) follows

N(g) =(AQ+uP)q>, N(g)=[(A-B)Q+ uPls,
(A1)

with the longitudinal and transverse projection operator

1

1
2 2 2
—q,+ 19
s z

_gq_

M(q)=K,q°1+K, 24,4,

29,4,

2

1
G- g a4,
T T

1
Clg)=K; -21q,q, q,-Tq+ ;Qf
2
;_('quz - 2Tquz

Note, that these are the same matrices as by Jari¢ and
Nelson'? with the replacements for the elastic constants

there,
[#)
s m2 =

pt
_95 —J60
my= 2\!5[(2, ms = \’60K3.

V30
—\,
2

—

my =26 m3=3K,,

4

(A6)

APPENDIX B: THE DYNAMIC RESPONSE
FUNCTION

Consider now the dynamic response function

X(q.0)=[io’A - 0’B(q) - iwl'(q) - A(g)]™

X [~ T A - iwE(q) - Z(g)], (B1)

the six matrices A, B(q), I'(q), A(q), E(g), and Z(g) can be
identified as

PHYSICAL REVIEW B 81, 064205 (2010)

Q=¢®q¢ and P=1-4®4, (A2)

given already in Sec. I C. \ and u are the usual Lamé con-
stants and A defined as A:=2u+\. The tensor of viscosity
1)(g) splits also in a transverse and longitudinal part

7(q) = (7.Q + 7 P)g*,

where 7y and 7, are the correspond kinetic viscosities. Fi-
nally, phasonic matrix M(g) and coupling matrix C(g) take
the form

(A3)

24,4, 2q.q,
1 2 1 2 2
- gq - _qz + qu 2quz ) (A4)
T
1 1
29,4, R AR
-21q.4,
g 2,_| |2_ 2 2 2 (AS)
Tquz ’ q =19 _Qx+qy+qz‘
1
q: - 1q,+ ;qi
[
N (1 9) B (_ N F&)
=Too) Y0 0 0 )
N TN+ ——¢ [ +T n}C
==+ + - u =2
L'(g) = p I Po 1 9 Po - >
0 1
q* q*
-T [AA-B’1-Q -T,A—QC
A(g) = po~ po— |,
- Fvv’gt - FwM
1
—1+I',p 0
E(g)={ po - and
0 0
2
_ ‘I_Q 0
Z(q) = PO~ (B2)
Q _le

All of them are 6 X 6 matrices consisting of 3 X 3 blocks. We
define
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U(g.0) =[io’A - ’B(g) —ioL'(q) - A(g)] and

V(g.0) := [- oT A - iwE(q) - Z(q)]. (B3)
so that x(q,w) becomes
X(q.0)=U(g,0)"'V(q,0), (B4)
and for the 3 X 3 blocks, respectively,

X Xow\ (U Uiy \'(Vi 0
lwu KWW gwu HWW Q wa

Carrying the inversion of U(g, w) out,
1 (g;; +U0,0,,87'0,, U, —g;;gwsl)
U= ,
- - §_ : gwug;ll §_1
(B6)
the phononic x,,(q,®), phasonic x,,,(q,®), and coupling

part x,,.(q.®)=x,,(q.®) of the dynamic response function
results, with the stiffness tensor $:=U,,,,—U,, U-'U, . as

UU—UW?>

1
-, - iw(— + nLFuq2> +I 24
Po

PHYSICAL REVIEW B 81, 064205 (2010)

Xulq.©)=U,,V,,+U,,U0, S0, UV

—uu—uu —WU—uyy—un

= )_(Su - luwgtlgu’ (B7a)

Xow(g,0)=-U,U,, 7'V, =-x%CS'T,, (B7b)

lww(qs (1)) = §_lyww = Fw§_1 ’ (B7C)

where §:[—iwl+FW(M—nggQ—X(}QE)]. lgu denotes
the phononic response function in case of no coupling
(K3=0),

Xo(q,0) = X)(q,0)Q + X){(g, 0)P. (B8)

The longitudinal and transverse part take the form

Upy

0
xi(q,w) = . (B9a)
t iw3 - wZ( 7L + FuA)qz - lw(clz‘qz + 7”Ll—‘quél) + FuAf:_OB q4
. 1 )
—iol',+ —+ 7l q
P
X g.0) = ° (B9b)

. 2 !
- wz - lw(7]7'+ Fu,u)qz + Cqu + nTFqu’q4
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